Crosstie production is a complex and time-consuming process. Though they are the backbone of our railroads, crossties and the extraordinary performance they deliver are often taken for granted. Inside is a detailed explanation of just what all goes into producing one of the most enduring products in the railroad industry -- the treated wood crosstie.
Seedling to Mature Tree
35-45 years average growing time.
Dependent upon species, growing conditions, geographic location.
The vast majority of logged forests are 2nd or 3rd growth timber.

RAW MATERIAL PHASE
Seedling to Mature Tree
35-45 years average growing time.
Dependent upon species, growing conditions, geographic location.
The vast majority of logged forests are 2nd or 3rd growth timber.

Harvest
then Replanting/Regeneration.
Generally the harvesting method determines what species regenerate.
Current regrowth of timber exceeds the rate of harvest by as much as 300%.

RAW MATERIAL PHASE
Seedling to Mature Tree
35-45 years average growing time. Dependend upon species, growing conditions, geographic location. The vast majority of logged forests are 2nd or 3rd growth timber.

Harvest
then Replanting/Regeneration.
Generally the harvesting method determines what species regenerate. Current regrowth of timber exceeds the rate of harvest by as much as 300%.

Transportation Phase I
To sawmill or to logger or sawmill off-site yard inventory depending on conditions.

RAW MATERIAL PHASE
Seedling to Mature Tree
35-45 years average growing time.
Dependent upon species, growing conditions, geographic location.
The vast majority of logged forests are 2nd or 3rd growth timber.

Harvest
then Replanting/Regeneration.
Generally the harvesting method determines what species regenerate.
Current regrowth of timber exceeds the rate of harvest by as much as 300%.

Transportation Phase I
To sawmill or to logger or sawmill off-site yard inventory depending on conditions.

Inspection Phase I
Logs sorted by species and grade as they arrive at sawmill.

RAW MATERIAL PHASE
Seedling to Mature Tree
35-45 years average growing time.
Dependent upon species, growing conditions, geographic location.
The vast majority of logged forests are 2nd or 3rd growth timber.

Harvest
then Replanting/Regeneration.
Generally the harvesting method determines what species regenerate.
Current regrowth of timber exceeds the rate of harvest by as much as 300%.

Transportation Phase I
To sawmill or to logger or sawmill off-site yard inventory depending on conditions.

Inspection Phase I
Logs sorted by species and grade as they arrive at sawmill.

Inventory Phase I
As logs at the sawmill up to 4 months.

RAW MATERIAL PHASE
Processing Phase I
Logs sawn into rough products.

Tie logs can be sawn into a variety of end products that may or may not yield a tie depending on market product pricing.
Processing Phase I
Logs sawn into rough products.
Tie logs can be sawn into a variety of end products that may or may not yield a tie depending on market product pricing.

Inspection Phase II
This is where the sawyer determines what products to cut from log.

Other Log Products
Pallet lumber, grade lumber of varying thicknesses that yields flooring, furniture blocks/lumber, cabinet lumber, moulding/millwork stock.

Center of Log Products
Ties, pallet cants, lumber, industrial timbers.

RAW MATERIAL PHASE
Processing Phase I
Logs sawn into rough products.
Tie logs can be sawn into a variety of end products that may or may not yield a tie depending on market product pricing.

Inspection Phase II
This is where the sawyer determines what products to cut from log.

Other Log Products
Pallet lumber, grade lumber of varying thicknesses that yields flooring, furniture blocks/lumber, cabinet lumber, moulding/millwork stock.

Center of Log Products
Ties, pallet cants, lumber, industrial timbers.

Inspection Phase III
GRADE TIES - 7x9, 7x8, 6x8, of either 8½ or 9 feet in length.
INDUSTRIAL TIES not meeting grade, but serviceable.
LANDSCAPE TIES not serviceable ties (cull).

RAW MATERIAL PHASE
Inventory Phase II
Material can remain in inventory for several weeks.

Untreated Tie Phase
Inventory Phase II
Material can remain in inventory for several weeks.

Transportation Phase II
Directly to treating plant. OR To concentration yard.
Railroad or independent contractor owned for days to months depending on the services being provided at the yard---stacking, drying, etc.

UNTREATED TIE PHASE
Inventory Phase II
Material can remain in inventory for several weeks.

Transportation Phase II
Directly to treating plant. OR To concentration yard.
Railroad or independent contractor owned for days to months depending on the services being provided at the yard—stacking, drying, etc.

Inspection Phase IV
Inspection prior to payment for untreated ties.
Degrade or fall-down can occur at this point as well.

If ties are held by an independent contractor for partial processing, such as sorting by grade, end plating or trimming, this would occur prior to Transportation Phase II to treating plant and inspection phase IV at treating plant.

Transportation Phase II to Treating Plant also Inspection Phase IV when ties arrive at treating plant.

UNTREATED TIE PHASE
Processing Phase II
 Begins with precision double-end-trimming, incising, end-plating, boring for pre-plating kerfing and branding of ties.

UNTREATED TIE PHASE
Processing Phase II

 Begins with precision double-end-trimming, incising, end-plating, boring for pre-plating kerfing and branding of ties.

UNTREATED TIE PHASE
Processing Phase II

Begins with precision double-end-trimming, incising, end-plating, boring for pre-plating kerfing and branding of ties.

Stack for air drying
Mixed hardwood species 4-8 months
Oaks 8-12 months

UNTREATED TIE PHASE
Processing Phase II
Begin with precision double-end-trimming, incising, end-plating, boring for pre-plating kerfing and branding of ties.

Stack for air drying
Mixed hardwood species 4-8 months
Oaks 8-12 months

UNTREATED TIE PHASE
Processing Phase II

Begins with precision double-end-trimming, incising, end-plating, boring for pre-plating kerfing and branding of ties.

Stack for air drying
Mixed hardwood species 4-8 months
Oaks 8-12 months

Processing Phase III - Inspection Phase V

Air dried ties are inspected and packaged for treatment.

Untreated Tie Phase
Processing Phase II

 Begins with precision double-end-trimming, incising, end-plating, boring for pre-plating kerfing and branding of ties.

Pre-Treatment (if specified)
Borate Diffusion
Requires 2-6 weeks in storage

Stack for air drying
Mixed hardwood species 4-8 months
Oaks 8-12 months

If pretreatment is specified, ties must still be air-dried for 4-12 months depending on species and location.

Processing Phase III - Inspection Phase V
Air dried ties are inspected and packaged for treatment.

Untreated Tie Phase
Processing Phase II

Begin with precision double-end-trimming, incising, end-plating, boring for pre-plating kerfing and branding of ties.

- **Pre-Treatment (if specified)**
 - Borate Diffusion
 - Requires 2-6 weeks in storage

- **Stack for air drying**
 - Mixed hardwood species 4-8 months
 - Oaks 8-12 months

 If pretreatment is specified, ties must still be air-dried for 4-12 months depending on species and location.

Processing Phase III - Inspection Phase V

Air dried ties are inspected and packaged for treatment.

Untreated Tie Phase
Processing Phase II

Begins with precision double-end-trimming, incising, end-plating, boring for pre-plating kerfing and branding of ties.

Pre-Treatment (if specified)
Borate Diffusion
Requires 2-6 weeks in storage

If pretreatment is specified, ties must still be air-dried for 4-12 months depending on species and location.

Stack for air drying
Mixed hardwood species 4-8 months
Oaks 8-12 months

Package for Boultonizing
Up to 1 month

* Boultonizing is an in-cylinder rapid drying / treatment process that allows green ties to be creosote treated without air drying storage time.

Processing Phase III - Inspection Phase V

Air dried ties are inspected and packaged for treatment.

Untreated Tie Phase
Processing Phase IV

Preservative (Creosote) Pressure Treating Occurs

8-hour to 36-hour cycles depending on which treating process is employed and the capabilities of the treating plant. The treating specifications of American Wood-Preservers’ Association (AWPA) and American Railway Engineering and Maintenance-of-Way Association (AREMA), or customer/end user will be followed.

Preservative delivery to treating plant must occur in timely scheduled manner for this processing phase to occur efficiently.
Processing Phase IV
PRESERVATIVE (Creosote) PRESSURE TREATING OCCURS
8-hour to 36-hour cycles depending on which treating process is employed and the capabilities of the treating plant. The treating specifications of American Wood-Preservers' Association (AWPA) and American Railway Engineering and Maintenance-of-Way Association (AREMA), or customer/end user will be followed.

Preservative delivery to treating plant must occur in timely scheduled manner for this processing phase to occur efficiently.

Drip Pad
1-4 hours typical to keep drippage within the closed treating process.

TREATED TIE PHASE
Processing Phase IV

Preservative (Creosote) Pressure Treating Occurs

8-hour to 36-hour cycles depending on which treating process is employed and the capabilities of the treating plant. The treating specifications of American Wood-Preservers' Association (AWPA) and American Railway Engineering and Maintenance-of-Way Association (AREMA), or customer/end user will be followed.

Preservative delivery to treating plant must occur in timely scheduled manner for this processing phase to occur efficiently.

Drip Pad

1-4 hours typical to keep drippage within the closed treating process.

Inspection Phase VI

Quality Control, Preservative Retention and Penetration.

Treated Tie Phase
Processing Phase IV
Preservative (Creosote) Pressure Treating Occurs
8-hour to 36-hour cycles depending on which treating process is employed and the capabilities of the treating plant. The treating specifications of American Wood-Preservers' Association (AWPA) and American Railway Engineering and Maintenance-of-Way Association (AREMA), or customer/end user will be followed.

Preservative delivery to treating plant must occur in timely scheduled manner for this processing phase to occur efficiently.

Drip Pad
1-4 hours typical to keep drippage within the closed treating process.

Inspection Phase VI
Quality Control, Preservative Retention and Penetration.

Inspection Phase VII
Customer and/or plant personnel provide one additional inspection prior to transportation.

Treated Tie Phase
Inventory Phase III
Up to 12 months - customer driven. Note: if held for more than one month, an additional inspection is required prior to shipment.

or

Transportation Phase III
By either rail or truck to installation site.

During this transportation phase there may be an additional inventory phase either in cars or holding yards depending upon installation requirements.

Treated Tie Phase
Inventory Phase III
Up to 12 months - customer driven. Note: If held for more than one month, an additional inspection is required prior to shipment.

or

Transportation Phase III
By either rail or truck to installation site. During this transportation phase there may be an additional inventory phase either in cars or holding yards depending upon installation requirements.

Site Delivery And Unloading
To Class 1 railroads, short line railroads, regional railroads, contractors, industrial and/or government customers.

TREATED TIE PHASE
Inventory Phase III
Up to 12 months - customer driven. Note: if held for more than one month, an additional inspection is required prior to shipment.

or

Transportation Phase III
By either rail or truck to installation site. During this transportation phase there may be an additional inventory phase either in cars or holding yards depending upon installation requirements.

Site Delivery And Unloading
To Class 1 railroads, short line railroads, regional railroads, contractors, industrial and/or government customers.

Installation In Track
By mechanized tie gangs or mechanized installation crew.

Treated Tie Phase
Inventory Phase III
Up to 12 months - customer driven. Note: if held for more than one month, an additional inspection is required prior to shipment.

Transportation Phase III
By either rail or truck to installation site. During this transportation phase there may be an additional inventory phase either in cars or holding yards depending upon installation requirements.

Site Delivery And Unloading
To Class 1 railroads, short line railroads, regional railroads, contractors, industrial and/or government customers.

Installation In Track
By mechanized tie gangs or mechanized installation crew.

In Track Service For 30-35 Years Average

Treated Tie Phase
Reuse-or-Recycle-or-Disposal Phase

When a crosstie reaches the end of service in Class 1 rail line, its usefulness can be extended as a relay tie in short line or regional railroads, as a landscape or fence timber, as fuel in a co-generation or bio-mass fuel recovery operation, or as material to be reconstituted into another product. Ultimately, all ties are properly disposed of.
USED TIE PHASE

Landscape tie or fence post

Relay tie
Landscape tie or fence post

Relay tie

Disposal

Landfill, or burn for fuel recovery/co-generation, or re-constitution into other products.

USED TIE PHASE
Landscape tie or fence post

Relay tie

Disposal

Landfill, or burn for fuel recovery/co-generation, or re-constitution into other products.

USED TIE PHASE
Landscape tie or fence post

Relay tie

Disposal

Landfill, or burn for fuel recovery/co-generation, or reconstitution into other products.

USED TIE PHASE